McCulloch-Pitts Model
The McCulloch-Pitts model maps the input $\{x_1, x_2,\cdots, x_i \cdots, x_N \}$ into a scalar $y\in\{1,-1\}$,
$$ y = \operatorname{sign}( w\cdot x - b). $$
Since $w\cdot x - b = 0$ is a hyperplane, the McCulloch-Pitts model separates the state space using this hyperplane. The shift $b$ determines the interception, and $w$ decides the slope.
Planted:
by L Ma;
Dynamic Backlinks to
cards/machine-learning/neural-networks/mcculloch-pitts-model
:cards/machine-learning/neural-networks/mcculloch-pitts-model
Links to:LM (2021). 'McCulloch-Pitts Model', Datumorphism, 02 April. Available at: https://datumorphism.leima.is/cards/machine-learning/neural-networks/mcculloch-pitts-model/.