# Graph Cuts

## Cut

For a subset of nodes $\mathcal A\subset \mathcal V$, the rest of nodes can be denoted as $\bar {\mathcal A} = \mathcal V \setminus \mathcal A$. In other words, $\mathcal A \cup \bar {\mathcal A} = \mathcal V$ and $\mathcal A \cap \bar {\mathcal A} = \emptyset$. That being said, the nodes can be partitioned into two subsets, $\mathcal A$ and $\bar {\mathcal A}$. The cut of this partition is defined as the total number of edges between them,

$$ \operatorname{Cut} \left( \mathcal A, \bar{\mathcal A} \right) = \frac{1}{2} \left( \lvert (u, v)\in \mathcal E: u\in \mathcal A, v\in \bar{\mathcal A} \rvert + \lvert (u, v)\in \mathcal E: u\in \bar{\mathcal A}, v\in {\mathcal A} \rvert \right). $$

To generalize this notion, suppose we partition the nodes into $k$ subsets of nodes, $\mathcal A_1, \cdots, \mathcal A_k$, the **cut** is the total number of edges between $\mathcal A_k$ and $\bar{\mathcal A_k}$ ^{1},

$$ \operatorname{Cut} \left( \mathcal A_1, \cdots, \mathcal A_k \right) = \frac{1}{2} \sum_{k=1}^K \lvert (u, v)\in \mathcal E: u\in \mathcal A_k, v\in \bar{\mathcal A_k} \rvert. $$

For smaller cut value, the proposed patches $\mathcal A_1, \cdots, \mathcal A_k$ are more disconnected from the overall graph.

This definition is biased towards smaller graphlets, i.e., smaller subset of nodes will get smaller cut values.

## Ratio Cut

Ratio Cut normalizes the cut values by the size of the patches,

$$ \operatorname{RatioCut} \left( \mathcal A_1, \cdots, \mathcal A_k \right) = \frac{1}{2} \sum_{k=1}^K \frac{\lvert (u, v)\in \mathcal E: u\in \mathcal A_k, v\in \bar{\mathcal A_k} \rvert}{ \lvert \mathcal A_k \rvert}. $$

This definition punishes smaller patches using $\frac{1}{ \lvert \mathcal A_k \rvert}$.

## Normalized Cut

The normalized cut uses the node degrees as punishment, $\operatorname{vol}(\mathcal A_k) = \sum_{u\in\mathcal A_k} d_u$,

$$ \operatorname{NCut} \left( \mathcal A_1, \cdots, \mathcal A_k \right) = \frac{1}{2} \sum_{k=1}^K \frac{\lvert (u, v)\in \mathcal E: u\in \mathcal A_k, v\in \bar{\mathcal A_k} \rvert}{ \lvert\operatorname{vol}(A_k) \rvert}. $$

## Examples

### Barbell Graph

To illustrate the idea, we use a small barbell graph as an example.

Now we propose different partitions of the graph and calculate the cuts.

$A_1$ | $A_2$ | Cut | RatioCut | NCut |
---|---|---|---|---|

`{0, 1, 2}` | `{3, 4, 5}` | 1 | 0.67 | 0.29 |

`{0, 1, 2, 3}` | `{4, 5}` | 2 | 1.50 | 0.70 |

## Code

```
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
nx_draw_style = dict(node_color="tab:red", font_size=16, font_color="whitesmoke")
def ratio_cut_size(G, S, T=None, weight=None):
if T is None:
T = set(G) - set(S)
num_cut_edges = nx.cut_size(G, S, T=T, weight=weight)
norm_S = len(S)
norm_T = len(T)
return num_cut_edges * ((1 / norm_S) + (1 / norm_T))
def compare_cuts(graph, partition):
return {
"cut": nx.cut_size(G, partition[1], partition[2]),
"ncut": nx.normalized_cut_size(G, partition[1], partition[2]),
"ratio_cut": ratio_cut_size(G, partition[1], partition[2])
}
# barbell graph
G_bb = nx.barbell_graph(3, 0)
# visualize the graph
pos = nx.spring_layout(G_bb, seed=seed)
nx.draw(G_bb, pos=pos, with_labels = True, **nx_draw_style)
plt.show()
# two different partitions
partition_bb_1 = {
1: {0, 1, 2},
2: {3, 4, 5}
}
partition_bb_2 = {
1: {0, 1, 2, 3},
2: {4, 5}
}
# calculate the cuts for the two different partitions
compare_cuts(
G_bb, partition_bb_1
), compare_cuts(
G_bb, partition_bb_2
)
```

`cards/graph/graph-cuts`

:L Ma (2021). 'Graph Cuts', Datumorphism, 09 April. Available at: https://datumorphism.leima.is/cards/graph/graph-cuts/.