Neyman-Pearson Theory
The Neyman-Pearson hypothesis testing tests two hypothesis, hypothesis $H$, and an alternative hypothesis $H_A$.
Neyman-Pearson Lemma
The Neyman-Pearson Lemma is an very intuitive lemma to understand how to choose a hypothesis. The lecture notes from PennState is a very good read on this topic1.
An example
For simplicity, we assume that there exists a test statistic $T$ and $T$ can be used to measure how likely the hypothesis $H$ is true, e.g., the hypothesis $H$ is false, corresponds to $T$ being small.
One example is the ratio of likelihood2,
$$ T \to L(H)/L(H_A), $$
where $T$ will be large if $H$ is true.
To be able to judge the hypothesis, we “loosely” define a probability
$$ p_H = P(T\leq c\vert H), $$
where $c$ is a preset critical value of $T$. Given a threshold $\epsilon$ for $p_H$, we claim the hypothesis $H$ can be rejected if $p_H<\epsilon$.
pennstate_stats 26.1 - Neyman-Pearson Lemma. In: PennState: Statistics Online Courses [Internet]. [cited 2 Apr 2022]. Available: https://online.stat.psu.edu/stat415/lesson/26/26.1 ↩︎
wiki_likelihood-ratio_test Contributors to Wikimedia projects. Likelihood-ratio test. In: Wikipedia [Internet]. 10 Jun 2021 [cited 2 Apr 2022]. Available: https://en.wikipedia.org/wiki/Likelihood-ratio_test ↩︎
- Shafer2007 Shafer G, Vovk V. A tutorial on conformal prediction. arXiv [cs.LG]. 2007. Available: http://arxiv.org/abs/0706.3188
- Perezgonzalez2015 Perezgonzalez JD. Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. Front Psychol. 2015;6: 223. doi:10.3389/fpsyg.2015.00223
- pennstate_stats 26.1 - Neyman-Pearson Lemma. In: PennState: Statistics Online Courses [Internet]. [cited 2 Apr 2022]. Available: https://online.stat.psu.edu/stat415/lesson/26/26.1
- wiki_likelihood-ratio_test Contributors to Wikimedia projects. Likelihood-ratio test. In: Wikipedia [Internet]. 10 Jun 2021 [cited 2 Apr 2022]. Available: https://en.wikipedia.org/wiki/Likelihood-ratio_test
wiki/statistical-hypothesis-testing/neyman-pearson-theory
:L Ma (2022). 'Neyman-Pearson Theory', Datumorphism, 04 April. Available at: https://datumorphism.leima.is/wiki/statistical-hypothesis-testing/neyman-pearson-theory/.