Contrastive Model

Contrastive models learn to compare1. Contrastive use special objective functions such as [[NCE]] Noise Contrastive Estimation: NCE Noise contrastive estimation (NCE) objective function is1 $$ \mathcal L = \mathbb E_{x, x^{+}, x^{-}} \left[ - \ln \frac{ C(x, x^{+})}{ C(x,x^{+}) + C(x,x^{-}) } \right], $$ where $x^{+}$ represents data similar to $x$, $x^{-}$ represents data dissimilar to $x$, $C(\cdot, \cdot)$ is a function to compute the similarities. For example, we can use $$ C(x, x^{+}) = e^{ f(x)^T f(x^{+}) }, $$ so that the objective function becomes $$ \mathcal L = \mathbb E_{x, x^{+}, x^{-}} \left[ - \ln \frac{ e^{ … and [[Mutual Information]] Mutual Information Mutual information is defined as $$ I(X;Y) = \mathbb E_{p_{XY}} \ln \frac{P_{XY}}{P_X P_Y}. $$ In the case that $X$ and $Y$ are independent variables, we have $P_{XY} = P_X P_Y$, thus $I(X;Y) = 0$. This makes sense as there would be no “mutual” information if the two variables are independent of each other. Entropy and Cross Entropy Mutual information is closely related to entropy. A simple decomposition shows that $$ I(X;Y) = H(X) - H(X\mid Y), $$ which is the reduction of … .

Planted: by ;

L Ma (2021). 'Contrastive Model', Datumorphism, 08 April. Available at: https://datumorphism.leima.is/wiki/machine-learning/contrastive-models/contrastive/.