Eigenvalues and Eigenvectors
To find the eigenvectors $\mathbf x$ of a matrix $\mathbf A$, we construct the eigen equation
$$ \mathbf A \mathbf x = \lambda \mathbf x, $$
where $\lambda$ is the eigenvalue.
We rewrite it in the components form,
$$ \begin{equation} A_{ij} x_j = \lambda x_i. \label{eqn-eigen-decomp-def} \end{equation} $$
Mathematically speaking, it is straightforward to find the eigenvectors and eigenvalues.
Eigenvectors are Special Directions
Judging from the definition in Eq.($\ref{eqn-eigen-decomp-def}$), the eigenvectors do not change direction under the operation of the matrix $\mathbf A$.
Reconstruct $\mathbf A$
We can reconstruct $\mathbf A$ using the eigenvalues and eigenvectors.
First of all, we will construct a matrix of eigenvectors,
$$ \mathbf P = \begin{pmatrix}\mathbf x_1 & \mathbf x_2 & \cdots & \mathbf x_n \end{pmatrix}. $$
We also construct a diagonalized matrix $\mathbf \Lambda$
$$ \mathrm{diag} (\mathbf \Lambda) = \begin{pmatrix}\lambda_1 & \lambda_2 & \cdots & \lambda_n \end{pmatrix}. $$
The original matrix $A$ is reconstruct by
$$ \mathbf A = \mathbf P \mathbf \Lambda \mathbf P^T. $$
cards/math/eigendecomposition
:cards/math/eigendecomposition
Links to:L Ma (2019). 'Eigenvalues and Eigenvectors', Datumorphism, 05 April. Available at: https://datumorphism.leima.is/cards/math/eigendecomposition/.